Discover
Browse
Linear Algebra
English
Linear Algebra
English
Loading player...
Mod-01 Lec-01 Introduction to the Course Contents.
Resources
(loading...)
Playlist (50 of 52 videos)
Playlist (50 of 52 videos)
1
Mod-01 Lec-01 Introduction to the Course Contents.
26:47
2
Mod-01 Lec-02 Linear Equations
35:10
3
Mod-01 Lec-03a Equivalent Systems of Linear Equations I: Inverses of Elementary Row-operations
40:48
4
Mod-01 Lec-03b Equivalent Systems of Linear Equations II: Homogeneous Equations, Examples
43:58
5
Mod-01 Lec-04 Row-reduced Echelon Matrices
48:23
6
Mod-01 Lec-05 Row-reduced Echelon Matrices and Non-homogeneous Equations
47:19
7
Mod-01 Lec-06 Elementary Matrices, Homogeneous Equations and Non-homogeneous Equations
49:14
8
Mod-01 Lec-07 Invertible matrices, Homogeneous Equations Non-homogeneous Equations
50:58
9
Mod-02 Lec-08 Vector spaces
34:43
10
Mod-02 Lec-09 Elementary Properties in Vector Spaces. Subspaces
48:16
11
Mod-02 Lec-10 Subspaces (continued), Spanning Sets, Linear Independence, Dependence
43:25
12
Mod-03 Lec-11 Basis for a vector space
48:48
13
Mod-03 Lec-12 Dimension of a vector space
48:31
14
Mod-03 Lec-13 Dimensions of Sums of Subspaces
52:11
15
Mod-04 Lec-14 Linear Transformations
50:10
16
Mod-04 Lec-15 The Null Space and the Range Space of a Linear Transformation
51:04
17
Mod-04 Lec-16 The Rank-Nullity-Dimension Theorem. Isomorphisms Between Vector Spaces
41:45
18
Mod-04 Lec-17 Isomorphic Vector Spaces, Equality of the Row-rank and the Column-rank I
47:34
19
Mod-04 Lec-18 Equality of the Row-rank and the Column-rank II
36:08
20
Mod-05 Lec19 The Matrix of a Linear Transformation
40:27
21
Mod-05 Lec-20 Matrix for the Composition and the Inverse. Similarity Transformation
47:04
22
Mod-06 Lec-21 Linear Functionals. The Dual Space. Dual Basis I
49:20
23
Mod-06 Lec-22 Dual Basis II. Subspace Annihilators I
38:53
24
Mod-06 Lec-23 Subspace Annihilators II
50:08
25
Mod-06 Lec-24 The Double Dual. The Double Annihilator
47:34
26
Mod-06 Lec-25 The Transpose of a Linear Transformation. Matrices of a Linear
45:22
27
Mod-07 Lec-26 Eigenvalues and Eigenvectors of Linear Operators
40:11
28
Mod-07 Lec-27 Diagonalization of Linear Operators. A Characterization
47:01
29
Mod-07 Lec-28 The Minimal Polynomial
42:38
30
Mod-07 Lec-29 The Cayley-Hamilton Theorem
47:21
31
Mod-08 Lec-30 Invariant Subspaces
39:19
32
Mod-08 Lec-31 Triangulability, Diagonalization in Terms of the Minimal Polynomial
51:30
33
Mod-08 Lec-32 Independent Subspaces and Projection Operators
48:42
34
Mod-09 Lec-33 Direct Sum Decompositions and Projection Operators I
48:49
35
Mod-09 Lec-34 Direct Sum Decomposition and Projection Operators II
46:40
36
Mod-10 Lec-35 The Primary Decomposition Theorem and Jordan Decomposition
38:51
37
Mod-10 Lec-36 Cyclic Subspaces and Annihilators
50:49
38
Mod-10 Lec-37 The Cyclic Decomposition Theorem I
49:56
39
Mod-10 Lec-38 The Cyclic Decomposition Theorem II. The Rational Form
46:12
40
Mod-11 Lec-39 Inner Product Spaces
44:44
41
Mod-11 Lec-40 Norms on Vector spaces. The Gram-Schmidt Procedure I
53:21
42
Mod-11 Lec-41 The Gram-Schmidt Procedure II. The QR Decomposition.
43:09
43
Mod-11 Lec-42 Bessel's Inequality, Parseval's Indentity, Best Approximation
41:53
44
Mod-12 Lec-43 Best Approximation: Least Squares Solutions
50:37
45
Mod-12 Lec-44 Orthogonal Complementary Subspaces, Orthogonal Projections
50:01
46
Mod-12 Lec-45 Projection Theorem. Linear Functionals
47:23
47
Mod-13 Lec-46 The Adjoint Operator
48:21
48
Mod-13 Lec-47 Properties of the Adjoint Operation. Inner Product Space Isomorphism
52:37
49
Mod-14 Lec-48 Unitary Operators
48:17
50
Mod-14 Lec-49 Unitary operators II. Self-Adjoint Operators I.
42:11
Load more videos